Transcriptome Changes in Eriocheir sinensis Megalopae after Desalination Provide Insights into Osmoregulation and Stress Adaption in Larvae

Abstract

Eriocheir sinensis, an extremely invasive alien crab species, has important economic value in China. It encounters different salinities during its life cycle, and at the megalopal stage it faces a turning point regarding the salinity in its environment.

We applied RNA sequencing to E. sinensis megalopae before (MB) and after (MA) desalination, resulting in the discovery of 21,042 unigenes and 908 differentially expressed genes (DEGs, 4.32% of the unigenes). The DEGs primarily belonged to the Gene Ontology groups ‘‘Energy metabolism,’’ ‘‘Oxidoreductase activity,’’‘‘Translation,’’ ‘‘Transport,’’ ‘‘Metabolism,’’ and ‘‘Stress response.’’ In total, 33 DEGs related to transport processes were found, including 12 proton pump genes, three ATP-binding cassettes (ABCs), 13 solute carrier (SLC) family members, two sweet sugar transporter (ST) family members and three other substance transporters.

Mitochondrial genes as well as genes involved in the tricarboxylic acid cycle,glycolytic pathway, or b-oxidation pathway, which can generate energy in the form of ATP, were typically up-regulated in MA. 11 unigenes related to amino acidmetabolism and a large number of genes related to protein synthesis weredifferentially expressed in MB and MA, indicating that E. sinensis possibly adjusts its concentration of free amino acid osmolytes for hyper-osmoregulation.

Additionally, 33 salinity and oxidative stress induced genes were found to be differentially expressed, such as the LEA2, HSPs, GST and coagulation factor genes. Notably, LEA2 is an extremely hydrophilic protein that responds to desiccation and reported for the first time in crabs. Therefore, we suppose that when the environment is hypo-osmotic, the megalopae might compensate for ionloss via hyper-osmoregulation by consuming more energy, accompanied by a series of stress induced adaptions. This study provides the first genome-wide transcriptome analysis of E. sinensis megalopae for studying its osmoregulationand stress adaption mechanisms.

原文索引

Min Hui, Yuan Liu, Chengwen Song, Yingdong Li, Guohui Shi, Zhaoxia Cui (2014) Transcriptome Changes in Eriocheir sinensis Megalopae after Desalination Provide Insights into Osmoregulation and Stress Adaption in Larvae.PLoS ONE 9(12): e114187. doi:10.1371/ journal.pone.0114187.

文章链接

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114187